skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sadekov, Aleksey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in many marine environments and play a major role in global carbon cycling. Species recognition in Foraminifera is mainly based on morphological characters and nuclear 18S ribosomal RNA barcoding. The 18S rRNA contains variable sequence regions that allow for the identification of most foraminiferal species. Still, some species show limited variability, while others contain high levels of intragenomic polymorphisms, thereby complicating species identification. The use of additional, easily obtainable molecular markers other than 18S rRNA will enable more detailed investigation of evolutionary history, population genetics and speciation in Foraminifera. Here we present the first mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences (“barcodes”) of Foraminifera. We applied shotgun sequencing to single foraminiferal specimens, assembled COI, and developed primers that allow amplification of COI in a wide range of foraminiferal species. We obtained COI sequences of 49 specimens from 17 species from the orders Rotaliida and Miliolida. Phylogenetic analysis showed that the COI tree is largely congruent with previously published 18S rRNA phylogenies. Furthermore, species delimitation with ASAP and ABGD algorithms showed that foraminiferal species can be identified based on COI barcodes. 
    more » « less
  2. Abstract Coccolithophores are an important group of calcifying marine phytoplankton. Although coccolithophores are not silicified, some species exhibit a requirement for Si in the calcification process. These species also possess a novel protein (SITL) that resembles the SIT family of Si transporters found in diatoms. However, the nature of Si transport in coccolithophores is not yet known, making it difficult to determine the wider role of Si in coccolithophore biology. Here, we show that coccolithophore SITLs act as Na+‐coupled Si transporters when expressed in heterologous systems and exhibit similar characteristics to diatom SITs. We find thatCbSITLfromCoccolithus braarudiiis transcriptionally regulated by Si availability and is expressed in environmental coccolithophore populations. However, the Si requirement ofC. braarudiiand other coccolithophores is very low, with transport rates of exogenous Si below the level of detection in sensitive assays of Si transport. As coccoliths contain only low levels of Si, we propose that Si acts to support the calcification process, rather than forming a structural component of the coccolith itself. Si is therefore acting as a micronutrient in coccolithophores and natural populations are only likely to experience Si limitation in circumstances where dissolved silicon (DSi) is depleted to extreme levels. 
    more » « less
  3. Abstract The ratio of boron to calcium (B/Ca) in a subset of foraminifera has been shown to covary with seawater carbonate chemistry, making this geochemical signature a promising proxy for carbon cycle science. Some studies suggest complications with the B/Ca proxy in photosymbiont‐bearing planktonic foraminifera, while relatively few studies have investigated B/Ca in species that lack large dinoflagellate symbionts. For the first time, we use a sediment trap time series to evaluate B/Ca of subtropical and subpolar planktonic foraminifera species that are asymbiotic (Globigerina bulloidesandNeogloboquadrina incompta) and a species that hosts small intrashell photosymbionts (Neogloboquadrina dutertrei). We find that B/Ca measurements across size fractions indicate overall little to no size‐dependent uptake of boron that has previously been reported in some symbiont‐bearing foraminifera.Neogloboquadrina incomptaandN.dutertreiB/Ca are strongly correlated with calcite saturation, pH, and carbonate ion concentration, which is in good agreement with the limited number of published core top results. WhileG.bulloidesB/Ca trends with seasonal fluctuations in carbonate chemistry, during discrete periods considerable B/Ca offsets occur when a crypticG.bulloidesspecies is known to be seasonally present within the region. We confirm presence and significant B/Ca offset between cryptic species by individual LA‐ICP‐MS analyses. This finding calls into question the use of traditional morphological classification to lump what might be genetically distinct species for geochemical analyses. Our overall results highlight the utility ofG.bulloides,N.incompta, andN.dutertreiB/Ca while bringing to light new considerations regarding divergent geochemistry of cryptic species. 
    more » « less